Cyber Forensics Explainable AI: Transparent Neural Networks Improve Evidence Reliability

Authors

  • Prof. Markus Weber Department of Mechanical Engineering, Darmstadt University of Applied Sciences, Germany Author

Keywords:

Explainable AI, Cyber Forensics, Neural Networks

Abstract

AI has transformed cyber forensics evidence analysis. AI in forensic investigations is difficult since neural networks are "black-box" and hard to understand. Cyberforensics' explainable AI suggests transparent and interpretable neural networks may increase digital evidence dependability. This article addresses saliency maps, attention processes, and feature significance analysis to emphasize neural networks and the requirement for AI models to validate predictions. XAI enhances forensic investigative decision-making, legal AI validation, and automated system trust, according to case studies. XAI-cyber forensics integration is needed for court-accountable AI-driven evidence

Downloads

Download data is not yet available.

References

Madupati, Bhanuprakash. "Integration of Cloud Computing in Smart Cities: Opportunities, Challenges, and Future Direction Paper." Challenges, and Future Direction Paper (December 06, 2019) (2019).

Gupta, Neha, and Vivek Kapoor. "Hybrid cryptographic technique to secure data in web application." Journal of Discrete Mathematical Sciences and Cryptography 23.1 (2020): 125-135.

Talati, Dhruvitkumar V. "Silicon minds: The rise of AI-powered chips." (2021).

Kalluri, Kartheek. "Migrating Legacy System to Pega Rules Process Commander v7. 1." (2015).

S. Kumari, “Agile Cloud Transformation in Enterprise Systems: Integrating AI for Continuous Improvement, Risk Management, and Scalability”, Australian Journal of Machine Learning Research & Applications, vol. 2, no. 1, pp. 416–440, Mar. 2022

Madupati, Bhanuprakash. "Revolution of Cloud Technology in Software Development." Available at SSRN 5146576 (2019).

Gondaliya, Jayraj, et al. "Hybrid security RSA algorithm in application of web service." 2018 1st International Conference on Data Intelligence and Security (ICDIS). IEEE, 2018.

Talati, Dhruvitkumar. "Artificial Intelligence and unintended bias: A call for responsible innovation." (2021).

Kalluri, Kartheek. "ENHANCING CUSTOMER SERVICE EFFICIENCY: A COMPARATIVE STUDY OF PEGA'S AI-DRIVEN SOLUTIONS."

S. Kumari, “AI-Enhanced Agile Development for Digital Product Management: Leveraging Data-Driven Insights for Iterative Improvement and Market Adaptation”, Adv. in Deep Learning Techniques, vol. 2, no. 1, pp. 49–68, Mar. 2022

Madupati, Bhanuprakash. "Blockchain in Day-to-Day Life: Transformative Applications and Implementation." Available at SSRN 5118207 (2021).

Kalluri, Kartheek. "Federate Machine Learning: A Secure Paradigm for Collaborative AI in Privacy-Sensitive Domains." International Journal on Science and Technolo-gy 13.4 (2022): 1-13.

S. Kumari, “AI-Driven Cybersecurity in Agile Cloud Transformation: Leveraging Machine Learning to Automate Threat Detection, Vulnerability Management, and Incident Response”, J. of Art. Int. Research, vol. 2, no. 1, pp. 286–305, Apr. 2022

S. Kumari, “AI-Driven Cloud Transformation for Product Management: Optimizing Resource Allocation, Cost Management, and Market Adaptation in Digital Products ”, IoT and Edge Comp. J, vol. 2, no. 1, pp. 29–54, Jun. 2022

Kalluri, Kartheek. "Blockchain Augment AI: Securing Decision Pipelines Decentralized in Systems."

Madupati, Bhanuprakash. "Kubernetes: Advanced Deployment Strategies-* Technical Perspective." (2021).

Kalluri, Kartheek. "Optimizing Financial Services Implementing Pega's Decisioning Capabilities for Fraud Detection." International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences 10.1 (2022): 1-9.

S. Kumari, “Cybersecurity in Digital Transformation: Using AI to Automate Threat Detection and Response in Multi-Cloud Infrastructures ”, J. Computational Intel. & Robotics, vol. 2, no. 2, pp. 9–27, Aug. 2022

Downloads

Published

30-12-2022

How to Cite

[1]
P. M. Weber, “Cyber Forensics Explainable AI: Transparent Neural Networks Improve Evidence Reliability”, American J Auton Syst Robot Eng, vol. 2, pp. 376–382, Dec. 2022, Accessed: Dec. 12, 2025. [Online]. Available: https://ajasre.org/index.php/publication/article/view/56